SEARCH VEGSOURCE:

 

 

Follow Ups | Post Followup | Back to Discussion Board | VegSource
See spam or
inappropriate posts?
Please let us know.
  




From: TSS ()
Subject: USDA BSE MAD COW UPDATE October 26, 2006
Date: October 27, 2006 at 8:12 am PST

Ongoing Surveillance Program ;-)there only kidding themselves

Month Number of Tests
Sep 2006
1,792


Enhanced Surveillance Program (old flawed program)

BSE Weekly Test Results archive through Aug 20, 2006.

Month Number of Tests
Aug 2006
23,690





snip...end



http://www.aphis.usda.gov/newsroom/hot_issues/bse/bse_disease_testing.shtml



Release No. 0255.06
Contact:
Ed Loyd (202) 720-4623
Karen Eggert (202) 690-4755



USDA ANNOUNCES NEW BSE SURVEILLANCE PROGRAM

WASHINGTON, July 20, 2006-Agriculture Secretary Mike Johanns announced today that the U.S. Department of Agriculture will soon begin transitioning to an ongoing Bovine Spongiform Encephalopathy (BSE) surveillance program that corresponds to the extremely low prevalence of the disease in the U.S.

"It's time that our surveillance efforts reflect what we now know is a very, very low level of BSE in the United States," said Johanns. "This ongoing surveillance program will maintain our ability to detect BSE, provide assurance that our interlocking safeguards are successfully preventing BSE, while continuing to exceed science-based international guidelines."

The ongoing BSE surveillance program will sample approximately 40,000 animals each year. Under the program, USDA will continue to collect samples from a variety of sites and from the cattle populations where the disease is most likely to be detected, similar to the enhanced surveillance program procedures.

The new program will not only comply with the science-based international guidelines set forth by the World Animal Health organization (OIE), it will provide testing at a level ten times higher than the OIE recommended level.

USDA has an obligation to provide 30 days notice of the change to contractors who are performing the sampling and testing, so the earliest the new surveillance program would begin is late August. Once the ongoing surveillance program begins, USDA will periodically analyze the surveillance strategy to ensure the program provides the foundation for market confidence in the safety of U.S. cattle.

In April, USDA released an analysis of 7 years of BSE surveillance data. This included data from an enhanced surveillance program, which began in June 2004, as a one-time effort to determine the prevalence of BSE in the United States. The analysis concluded that the prevalence of BSE in the United States is less than 1 case per million adult cattle. The analysis further revealed that the most likely number of cases is between 4 and 7 infected animals out of 42 million adult cattle. The analysis was submitted to a peer review process and a panel of outside experts affirmed the conclusions.

The enhanced surveillance program has been funded using emergency CCC funds totaling $157.8 million since June 2004. Ongoing surveillance will cost approximate $17 million per year using funds appropriated by Congress. The President's FY 2007 budget request includes this level of funding.

BSE surveillance is not a food safety program. Human and animal health is protected by a system of interlocking safeguards, including the removal of specified risk materials - those tissues that studies have demonstrated may contain the BSE agent in infected cattle, along with the U.S. Food and Drug Administration's 1997 ruminant to ruminant feed ban. Scientific studies indicate that the longer a feed ban is in place, the lower the prevalence of BSE will become.

An outline of the ongoing BSE surveillance plan is available at http://www.aphis.usda.gov/newsroom/hot_issues/bse.shtml.



http://www.usda.gov/wps/portal/usdahome?contentidonly=true&contentid=2006/07/0255.xml



Bovine Spongiform Encephalopathy (BSE)

Ongoing Surveillance Plan

July 20, 2006

full text 21 pages ;

http://www.aphis.usda.gov/newsroom/hot_issues/bse/content/printable_version/BSE_ongoing_surv_plan_final_71406%20.pdf

May 2006

Peer Review of the

Estimation of Bovine Spongiform

Encephalopathy (BSE) Prevalence

in the United States

Final Report

snip...full text 50 pages here ;

http://www.aphis.usda.gov/peer_review/content/printable_version/BSE_Prevelance_Report.pdf

NOW, BACK TO REALITY ;


8. Scrapie in sheep and goat, CWD in deer and elk, are both running rampant and have been for decades, you cannot

and have not controled it, what do you plan to do about that, anything different since everything else has failed so far ?

snip...

WITH ANIMAL TSE in the USA rampant (the USA is the most documented Nation in the world with the most species

with TSE, all of which have been rendered and fed back to animals for human and animal consumption for decades),

with atypical TSE now in the USA, when will you start testing all animals susceptible to a TSE ?

I find it deeply disturbing that now USDA et al in fact are cutting BSE/TSE testing in the USA bovine down to 40,000 a year for the

following reasons ;

BSE monitoring in bovine animals EU Jan 1 to June 6 2006 COMPARED to USA (how not to find BSE)

COMPARING APPLES TO ORANGES I.E. USA TESTING FIGURES FOR BSE TO CATTLE RATIO

before June 2004 Enhanced BSE surveillance, during June 2004 Enhanced BSE cover-up, and

Page 25 of 98

8/3/2006

AFTER, which was proposed this week to be around 40,000 annually from here on out, in a cattle

population for USA of about 100 million every year.

THEN COMPARE TO E.U. COUNTRIES TESTING FIGURES FOR BSE TO CATTLE RATIO.

PLEASE note besides the total tests *** country, I have added total cattle population along

with some additional information on some countries below. While you are analyzing the additional

information, check out some of the imports to USA from documented BSE countries and please note,

among other things, the infamous, non-species coding system for feed, mbm, and such.

Seems those USA BSE triple firewalls have been seeping all along.

AFTER analyzing for yourself, then ask yourself, who is fooling whom? ...TSS

snip...

SEE FAILURES ;

PLEASE NOTE, while your are analyzing this information, please note just how terribly flawed

the June 2004 Enhanced BSE surveillance program was in the USA, all those cattle tested are

meaningless. 1st off, the following does not make any sense to me and even at that, why so

many ?

It should be noted that since the enhanced surveillance program began, USDA has also conducted approximately 9,200

routine

IHC tests on samples that did not first undergo rapid testing. This was done to ensure that samples inappropriate for the

rapid screen

test were still tested, and also to monitor and improve upon IHC testing protocols. Of those 9,200 routine tests, one test

returned a

non-definitive result on July 27, 2005.

http://www.aphis.usda.gov/lpa/issues/bse_testing/test_results.html

CAN you imagine how many might have been positive, IF proper BSE testing protocols were used.

WE know the infamous IHC gold standard for BSE the USDA et al boast about so much, is not as

gold as they claim. COME to find out, it is the least likely to find BSE, and maybe that is why it was

so gold to the USDA. IT also reminds me of the other infamous 'gold standard' the USDA preach about

all the time ;

*** Suppressed peer review of Harvard study October 31, 2002 ***

http://www.fsis.usda.gov/oa/topics/BSE_Peer_Review.pdf

WE found out just how inept the program was from the TEXAS mad cow that

USDA et al tried to cover-up, but got caught by the Honorable Phyllis Fong of the OIG.

SEE FAILURES ;

Page 72 of 98

8/3/2006

snip...

TO REDUCE TESTING OF BSE IN THE USA TO ONLY 40,000 A YEAR, is simply not scientific regardless of

what the OIE BSE testing protocol calls for. ALL one has

to do is look at the countries above that all went down with BSE, that all went by the infamous OIE BSE testing

protocols. THEN and only then, after the USA finally fumbled the 'BSE FREE' golden egg and accidently had to

document a case or two of mad cow, low and behold, what next? yep, you guessed it, time to move the goal post in the

middle of the football game, GWs and his sleeping partners at the OIE, gave birth to the BSE MRR policy, the legal

trading of all strains of TSE globally was born. ...

BILLING CODE: 3410-34-P

DEPARTMENT OF AGRICULTURE

Animal and Plant Health Inspection Service

9 CFR Parts 93, 94, 95, and 96

[Docket No. 03-080-3]

RIN 0579-AB73

Bovine Spongiform Encephalopathy; Minimal-Risk Regions and Importation of Commodities

AGENCY: Animal and Plant Health Inspection Service, USDA.

ACTION: Final rule.

snip...full text 98 pages ;

http://www.fsis.usda.gov/OPPDE/Comments/2006-0011/2006-0011-1.pdf

Possible contamination of dairy feeds with ruminant derived meat and bone meal.
FEED RECALL USA SEPT 6, 2006 1961.72 TONS IN COMMERCE AL, TN, AND WV
Date: September 6, 2006 at 7:58 am PST


http://www.fda.gov/bbs/topics/enforc.../ENF00968.html

Possible contamination of animal feed ingredients, including ingredients
that are used in feed for dairy animals, with ruminant derived meat and bone
meal. RECALLS ENFORCEMENT REPORT FOR AUGUST 9, 2006 KY, LA,
MS, AL, GA, AND TN 11,000+ TONS


http://www.fda.gov/bbs/topics/ENFORC.../ENF00964.html

The feed was manufactured from materials that may have been contaminated
with mammalian protein. RECALL MI MAMMALIAN PROTEIN VOLUME OF PRODUCT IN COMMERCE 27,694,240 lbs


http://www.fda.gov/bbs/topics/enforc.../ENF00963.html

Animal and fish feeds which were possibly contaminated with ruminant based
protein not labeled as "Do not feed to ruminants". RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006


http://www.fda.gov/bbs/topics/enforc.../ENF00963.html

USDA 2003

We have to be careful that we don't get so set in the way we do things that
we forget to look for different emerging variations of disease. We've gotten
away from collecting the whole brain in our systems. We're using the brain
stem and we're looking in only one area. In Norway, they were doing a
project and looking at cases of Scrapie, and they found this where they did
not find lesions or PRP in the area of the obex. They found it in the
cerebellum and the cerebrum. It's a good lesson for us. Ames had to go
back and change the procedure for looking at Scrapie samples. In the USDA,
we had routinely looked at all the sections of the brain, and then we got
away from it. They've recently gone back.
Dr. Keller: Tissues are routinely tested, based on which tissue provides an
'official' test result as recognized by APHIS.

Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't
they still asking for the brain? But even on the slaughter, they're looking
only at the brainstem. We may be missing certain things if we confine
ourselves to one area.


snip.............


Dr. Detwiler: It seems a good idea, but I'm not aware of it.
Another important thing to get across to the public is that the negatives
do not guarantee absence of infectivity. The animal could be early in the
disease and the incubation period. Even sample collection is so important.
If you're not collecting the right area of the brain in sheep, or if
collecting lymphoreticular tissue, and you don't get a good biopsy, you
could miss the area with the PRP in it and come up with a negative test.
There's a new, unusual form of Scrapie that's been detected in Norway. We
have to be careful that we don't get so set in the way we do things that we
forget to look for different emerging variations of disease. We've gotten
away from collecting the whole brain in our systems. We're using the brain
stem and we're looking in only one area. In Norway, they were doing a
project and looking at cases of Scrapie, and they found this where they did
not find lesions or PRP in the area of the obex. They found it in the
cerebellum and the cerebrum. It's a good lesson for us. Ames had to go
back and change the procedure for looking at Scrapie samples. In the USDA,
we had routinely looked at all the sections of the brain, and then we got
away from it. They've recently gone back.

Dr. Keller: Tissues are routinely tested, based on which tissue provides an
'official' test result as recognized by APHIS
.

Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't
they still asking for the brain? But even on the slaughter, they're looking
only at the brainstem. We may be missing certain things if we confine
ourselves to one area.


snip...


FULL TEXT;


Completely Edited Version
PRION ROUNDTABLE


Accomplished this day, Wednesday, December 11, 2003, Denver, Colorado


2005

=============================


CDC DR. PAUL BROWN TSE EXPERT COMMENTS 2006

The U.S. Department of Agriculture was quick to assure the public earlier
this week that the third case of mad cow disease did not pose a risk to
them, but what federal officials have not acknowledged is that this latest
case indicates the deadly disease has been circulating in U.S. herds for at
least a decade.

The second case, which was detected last year in a Texas cow and which USDA
officials were reluctant to verify, was approximately 12 years old.

These two cases (the latest was detected in an Alabama cow) present a
picture of the disease having been here for 10 years or so, since it is
thought that cows usually contract the disease from contaminated feed they
consume as calves. The concern is that humans can contract a fatal,
incurable, brain-wasting illness from consuming beef products contaminated
with the mad cow pathogen.

"The fact the Texas cow showed up fairly clearly implied the existence of
other undetected cases," Dr. Paul Brown, former medical director of the
National Institutes of Health's Laboratory for Central Nervous System
Studies and an expert on mad cow-like diseases, told United Press
International. "The question was, 'How many?' and we still can't answer
that."

Brown, who is preparing a scientific paper based on the latest two mad cow
cases to estimate the maximum number of infected cows that occurred in the
United States, said he has "absolutely no confidence in USDA tests before
one year ago" because of the agency's reluctance to retest the Texas cow
that initially tested positive.

USDA officials finally retested the cow and confirmed it was infected seven
months later, but only at the insistence of the agency's inspector general.

"Everything they did on the Texas cow makes everything USDA did before 2005
suspect," Brown said. ...snip...end


http://www.upi.com/ConsumerHealthDai...5-055557-1284r

CDC - Bovine Spongiform Encephalopathy and Variant Creutzfeldt ...
Dr. Paul Brown is Senior Research Scientist in the Laboratory of Central
Nervous System ... Address for correspondence: Paul Brown, Building 36, Room
4A-05, ...


http://www.cdc.gov/ncidod/eid/vol7no1/brown.htm




Audit Report

Animal and Plant Health Inspection Service

Bovine Spongiform Encephalopathy (BSE) Surveillance Program – Phase II

and

Food Safety and Inspection Service

Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III

Report No. 50601-10-KC January 2006

Finding 2 Inherent Challenges in Identifying and Testing High-Risk Cattle Still Remain

Our prior report identified a number of inherent problems in identifying and testing high-risk cattle. We reported that the challenges in identifying the universe of high-risk cattle, as well as the need to design procedures to obtain an appropriate representation of samples, was critical to the success of the BSE surveillance program. The surveillance program was designed to target nonambulatory cattle, cattle showing signs of CNS disease (including cattle testing negative for rabies), cattle showing signs not inconsistent with BSE, and dead cattle. Although APHIS designed procedures to ensure FSIS condemned cattle were sampled and made a concerted effort for outreach to obtain targeted samples, industry practices not considered in the design of the surveillance program reduced assurance that targeted animals were tested for BSE.

In our prior report, we recommended that APHIS work with public health and State diagnostic laboratories to develop and test rabies-negative samples for BSE. This target group is important for determining the prevalence of BSE in the United States because rabies cases exhibit clinical signs not inconsistent with BSE; a negative rabies test means the cause of the clinical signs has not been diagnosed.

APHIS agreed with our recommendation and initiated an outreach program with the American Association of Veterinary Laboratory Diagnosticians, as well as State laboratories. APHIS also agreed to do ongoing monitoring to ensure samples were obtained from this target population.

Although APHIS increased the samples tested from this target group as compared to prior years, we found that conflicting APHIS instructions on the ages of cattle to test resulted in inconsistencies in what samples were submitted for BSE testing. Therefore, some laboratories did not refer their rabies negative samples to APHIS in order to maximize the number tested for this critical target population. In addition, APHIS did not monitor the number of submissions of rabies negative samples for BSE testing from specific laboratories.


According to the Procedure Manual for BSE Surveillance, dated October 2004, the target population includes:


Central nervous system (CNS) signs and/or rabies negative - sample animals of any age (emphasis added):


a. Diagnostic laboratories –samples submitted due to evidence of CNS clinical signs.

Rabies Negative Samples

USDA/OIG-A/50601-10-KC Page 19 USDA/OIG-A/50601-10-KC Page 20

b. Public health laboratories – rabies negative cases.

c. Slaughter facilities – CNS ante mortem condemned at slaughter, sampled by FSIS.

d. On-the-farm – CNS cattle that do not meet the criteria for a foreign animal disease investigation.

For FYs 2002, 2003, and 2004 (through February 2004), NVSL received 170, 133, and 45 rabies-negative samples, respectively. Between June 1, 2004, and May 29, 2005, the number of samples received for testing increased to 226 rabies suspect samples. The collection sites submitting these samples follow.

Number of Rabies
Suspect Submissions *

Slaughter Plant
0

Renderer
2

On-Farm
11

Public Health Lab
94

Diagnostic Lab
81

3D-4D
8

Other
4


Collection Site

Total

200

* 26 were tested but not counted by APHIS towards meeting the target goals because the obex was not submitted.

We obtained a copy of a memorandum, dated July 13, 2004, that APHIS sent to diagnostic and public health laboratories providing them instructions on submitting samples for cattle showing signs of CNS diseases, but testing negative for rabies. The letter was sent to about 170 State veterinary diagnostic and public health laboratories and discussed the need to submit specimens to NVSL of all adult cattle (emphasis added) that showed signs of CNS diseases, but tested negative for rabies. This directive did not specify the age of the cattle. The Procedure Manual for BSE Surveillance, dated October 2004, specified samples of cattle of any age should be submitted.

We contacted laboratories in six States to determine if it was standard procedure to submit all negative rabies samples to NVSL. We found that, because of the lack of specificity in the APHIS letter and inadequate followup by APHIS, there were inconsistencies in the age of cattle samples submitted for BSE testing. For those States contacted, the following samples were submitted versus tested as negative for rabies.


USDA/OIG-A/50601-10-KC Page 21

Rabies Negative Tests Not Sent for BSE Testing Since June 1, 2004
State
Negative Rabies Tests

Not Sent for BSE Testing
Pennsylvania a/

15
18
Kansas b/

69
16
Wisconsin c/

1
11
South Dakota d/

0
7
Arizona e/

5
0
Mississippi e/

4
0
Total


Sent for BSE Testing

33

85

12

7

5

4

146

94

52

a/ A Pennsylvania laboratory official said only rabies negative cattle over 20 months of age were submitted for BSE testing. The laboratory did not submit 18 samples for BSE testing because the animals were less than 20 months of age.

b/ Kansas laboratory officials said early in the expanded surveillance program, there was confusion as to the cattle ages that should be submitted for BSE testing. They did not know if cattle should be submitted that were above 20 months or 30 months of age. Of the 16 animals not submitted for BSE testing, 14 were under 20 months of age from early in the expanded surveillance program. The other two animals were not tested due to internal laboratory issues. The Kansas and Nebraska area office officials contacted the laboratory and told the officials to submit rabies negative cattle of any age for BSE testing. The laboratory now submits all rabies negative cattle for BSE testing.

c/ A Wisconsin laboratory official said only rabies negative cattle samples 30 months of age or older are submitted for BSE testing. Of the 11 animals not submitted for BSE testing, 8 were less than 30 months of age. Wisconsin laboratory officials were not certain why the other three samples were not submitted.

d/ Laboratory officials from South Dakota said they did not receive notification from APHIS regarding the submission of rabies negative cases for BSE testing. The section supervisor and laboratory director were not aware of any letter sent to the laboratory. The section supervisor said most bovine rabies tests at the laboratory are performed on calves. We confirmed the laboratory’s address matched the address on APHIS’ letter distribution list. However, there was no evidence that the South Dakota area office contacted the laboratory. The laboratory was not listed on the documentation from the APHIS regional office detailing the area office contacts with laboratory personnel. We contacted the South Dakota area office and were advised that while some contact had been made with the laboratory, the contact may have involved Brucellosis rather than BSE. On May 4, 2005, the area office

33 Report from the Secretary’s Advisory Committee on Foreign Animal and Poultry Diseases, February 13, 2004.

advised us they recently contacted the laboratory regarding the submission of rabies negative samples for BSE testing.

e/ Arizona and Mississippi laboratory officials said they submitted all rabies negative samples for BSE testing regardless of the age of the animal.

An NVSL official stated that APHIS is not concerned with rabies negatives samples from cattle less than 30 months of age. This position, however, is contrary to APHIS’ published target population.

Our prior audit recognized the significant challenge for APHIS to obtain samples from some high-risk populations because of the inherent problems with obtaining voluntary compliance and transporting the carcasses for testing. USDA issued rules to prohibit nonambulatory animals (downers) from entering the food supply at inspected slaughterhouses. OIG recommended, and the International Review Subcommittee33 emphasized, that USDA should take additional steps to assure that facilitated pathways exist for dead and nonambulatory cattle to allow for the collection of samples and proper disposal of carcasses. Between June 1, 2004, and May 31, 2005, the APHIS database documents 27,617 samples were collected showing a reason for submission of nonambulatory and 325,225 samples were collected with reason of submission showing "dead."

APHIS made extensive outreach efforts to notify producers and private veterinarians of the need to submit and have tested animals from these target groups. They also entered into financial arrangements with 123 renderers and other collection sites to reimburse them for costs associated with storing, transporting, and collecting samples. However, as shown in exhibit F, APHIS was not always successful in establishing agreements with non-slaughter collection sites in some States. APHIS stated that agreements do not necessarily reflect the entire universe of collection sites and that the presentation in exhibit F was incomplete because there were many collection sites without a payment involved or without a formal agreement. We note that over 90 percent of the samples collected were obtained from the 123 collection sites with agreements and; therefore, we believe agreements offer the best source to increase targeted samples in underrepresented areas.

We found that APHIS did not consider industry practices in the design of its surveillance effort to provide reasonable assurance that cattle exhibiting possible clinical signs consistent with BSE were tested. Slaughter facilities do not always accept all cattle arriving for slaughter because of their business requirements. We found that, in one State visited, slaughter facilities pre-screened and rejected cattle (sick/down/dead/others not meeting business

Downers and Cattle that Died on the Farm

USDA/OIG-A/50601-10-KC Page 22 USDA/OIG-A/50601-10-KC Page 23

34 FSIS regulations do not specifically address the designation of an establishment’s "official" boundaries; however, FSIS Notices 29-04 (dated May 27, 2004) and 40-04 (dated July 29, 2004) make it clear that FSIS inspection staff are not responsible for sampling dead cattle that are not part of the "official" premises.

35 APHIS’ area office personnel stated that it was their understanding that some establishments in the State were not presenting cattle that died or were down on the transport vehicle to FSIS for ante mortem inspection. The dead and down cattle were left in the vehicle, if possible. In rare circumstances, dead cattle may be removed from the trailer by plant personnel to facilitate the unloading of other animals.

36 A May 20, 2004, Memorandum between the Administrators of APHIS and FSIS.

standards) before presentation for slaughter in areas immediately adjacent or contiguous to the official slaughter establishment. These animals were not inspected and/or observed by either FSIS or APHIS officials located at the slaughter facilities.

FSIS procedures state that they have no authority to inspect cattle not presented for slaughter. Further, APHIS officials stated they did not believe that they had the authority to go into these sorting and/or screening areas and require that the rejected animals be provided to APHIS for BSE sampling. Neither APHIS nor FSIS had any process to assure that animals left on transport vehicles and/or rejected for slaughter arrived at a collection site for BSE testing. FSIS allows slaughter facilities to designate the area of their establishment where federal inspection is performed; this is designated as the official slaughter establishment.34

We observed animals that were down or dead in pens outside the official premises that were to be picked up by renderers. Animals that were rejected by plant personnel were transported off the premises on the same vehicles that brought them to the plant.35

A policy statement36 regarding BSE sampling of condemned cattle at slaughter plants provided that effective June 1, 2004, FSIS would collect BSE samples for testing: 1) from all cattle regardless of age condemned by FSIS upon ante mortem inspection for CNS impairment, and 2) from all cattle, with the exception of veal calves, condemned by FSIS upon ante mortem inspection for any other reason.

FSIS Notice 28-04, dated May 20, 2004, informed FSIS personnel that, "FSIS will be collecting brain samples from cattle at federally-inspected establishments for the purpose of BSE testing." The notice further states that, "Cattle off-loaded from the transport vehicle onto the premises of the federally-inspected establishment (emphasis added), whether dead or alive, will be sampled by the FSIS Public Health Veterinarian (PHV) for BSE after the cattle have been condemned during ante mortem inspection. In addition, cattle passing ante mortem inspection but later found dead prior to slaughter will be condemned and be sampled by the FSIS PHV."

USDA/OIG-A/50601-10-KC Page 24

37 FSIS Notice 40-04, dated July 29, 2004.

38 FSIS Notice 29-04, dated May 27, 2004.

APHIS has the responsibility for sampling dead cattle off-loaded onto plant-owned property that is adjoining to, but not considered part of, the "official premises.37 FSIS procedures38 provide that "Dead cattle that are off-loaded to facilitate the off-loading of live animals, but that will be re-loaded onto the transport vehicle, are not subject to sampling by FSIS.

While performing our review in one State, we reviewed the circumstances at two slaughter facilities in the State that inspected and rejected unsuitable cattle before the animals entered the official receiving areas of the plants. This pre-screening activity was conducted in areas not designated by the facility as official premises of the establishment and not under the review or supervision of FSIS inspectors. The plant rejected all nonambulatory and dead/dying/sick animals delivered to the establishment. Plant personnel refused to offload any dead or downer animals to facilitate the offloading of ambulatory animals. Plant personnel said that the driver was responsible for ensuring nonambulatory animals were humanely euthanized and disposing of the carcasses of the dead animals. Plant personnel informed us that they did not want to jeopardize contracts with business partners by allowing unsuitable animals on their slaughter premises.

In the second case, one family member owned a slaughter facility while another operated a livestock sale barn adjacent to the slaughter facility. The slaughter facility was under FSIS’ supervision while the sale barn was not. Cattle sometimes arrived at the sale barn that were sick/down/dead or would die or go down while at the sale barn. According to personnel at the sale barn, these animals were left for the renderer to collect. The healthy ambulatory animals that remained were marketed to many buyers including the adjacent slaughter facility. When the slaughter facility was ready to accept the ambulatory animals for processing, the cattle would be moved from the sale barn to the slaughter facility where they were subject to FSIS’ inspection.

We requested the slaughter facilities to estimate the number of cattle rejected on a daily basis (there were no records to confirm the estimates). We visited a renderer in the area and found that the renderer had a contract with APHIS to collect samples for BSE testing. In this case, although we could not obtain assurance that all rejected cattle were sampled, the renderer processed a significant number of animals, as compared to the slaughter plants’ estimates of those rejected. Due to the close proximity (less than 5 miles) of the renderer to the slaughter facilities, and the premium it paid for dead cattle that were in good condition, there was a financial incentive for transport drivers to dispose of their dead animals at this renderer.

USDA/OIG-A/50601-10-KC Page 25

In our discussions with APHIS officials in Wisconsin and Iowa, they confirmed that there were plants in their States that also used pre-screening practices. On May 27, 2005, we requested APHIS and FSIS to provide a list of all slaughter facilities that pre-screened cattle for slaughter in locations away from the area designated as the official slaughter facility. Along with this request, we asked for information to demonstrate that either APHIS or FSIS confirmed there was a high likelihood that high-risk animals were sampled at other collection sites.

In response to our request, the APHIS BSE Program Manager stated that APHIS did not have information on slaughter plants that pre-screen or screen their animals for slaughter suitability off their official plant premises. To their knowledge, every company or producer that submits animals for slaughter pre-sorts or screens them for suitability at various locations away from the slaughter facility. For this reason, USDA focused its BSE sample collection efforts at other types of facilities such as renderers, pet food companies, landfills, and dead stock haulers. Further, in a letter to OIG on June 14, 2005, the administrators of APHIS and FSIS noted the following:

"…we believe that no specific actions are necessary or appropriate to obtain reasonable assurance that animals not presented for slaughter are being tested for BSE. There are several reasons for our position. First, we do not believe that the practice is in fact causing us to not test a significant enough number of animals in our enhanced surveillance program to invalidate the overall results. Second, OIG has concluded that because of the geographical proximity and business relationships of the various entities involved in the case investigated, there is reasonable assurance that a majority of the rejected cattle had been sampled. Third, it is also important to remember that the goal of the enhanced surveillance program is to test a sufficient number of animals to allow us to draw conclusions about the level of BSE (if any) in the American herd…We believe that the number we may be not testing because of the "pre-sorting" practice does not rise to a significant level. The number of animals tested to date has far exceeded expectations, so it is reasonable to infer that there are few of the animals in question, or that we are testing them at some other point in the process…APHIS estimated…there were approximately 446,000 high risk cattle…[and APHIS has]…tested over 375,000 animals in less than 1 year. This indicated that we are missing few animals in the high-risk population, including those that might be pre-sorted before entering a slaughter facility’s property."

We obtained 123 APHIS sampling agreements and contracts with firms and plotted their locations within the United States (see exhibit F). We also analyzed the samples tested to the BSE sampling goals allocated to each State under the prior surveillance program. This analysis showed that there are


USDA/OIG-A/50601-10-KC Page 26

39APHIS noted that sites with agreements do not necessarily reflect the entire universe of collection sites and at some sites APHIS collects samples with no payment involved and no agreement in place. OIG agrees that not all collection sites are reflected in our presentation of the 123 sites with reimbursable agreements. OIG believes obtaining sampling agreements is one of the primary methods available to increase sample numbers in areas with sampling gaps.

sampling gaps in two large areas of the United States where APHIS did not have contracts with collection sites. These two areas are shown in the following chart (Montana, South Dakota, North Dakota and Wyoming – Group 1 and Louisiana, Oklahoma, Arkansas, and Tennessee – Group 2):
State

Original Sampling Goal Based on (268,500 sampling goal)

Samples collected as of May 31, 2005

No. of BSE Sampling Agreements/
Contracts39
MT
5,076

4,894
2
SD
6,938

4,146
1
ND
3,616

3,442
0
WY
2,513

2,452
0
AREA TOTAL

14,934
OK
7,792

5,385
1
AR
3,672

3,319
0
TN
4,938

1,888
1
LA
2,312

1,860
1
AREA TOTAL


Deficit

182

2,792

174

61

2,407

353

3,050

452

12,452

APHIS notes that for the current surveillance program, it had established regional goals and APHIS was not trying to meet particular sampling levels in particular States. However, we believe that it would be advantageous for APHIS to monitor collection data and increase outreach when large geographical areas such as the above States do not provide samples in proportion to the numbers and types of cattle in the population.

We also disagree with APHIS/FSIS’ contention that because they have tested over 375,000 of their 446,000 estimate of high risk cattle, few in the high-risk population are being missed, including those that might be pre-screened before entering a slaughter facility’s property. In our prior audit, we reported that APHIS underestimated the high-risk population; we found that this estimate should have been closer to 1 million animals (see Finding 1). We recognize that BSE samples are provided on a voluntary basis; however, APHIS should consider industry practice in any further maintenance surveillance effort. Animals unsuitable for slaughter exhibiting symptoms not inconsistent with BSE should be sampled and their clinical signs recorded. However, this cited industry practice results in rejected animals not being made available to either APHIS or FSIS veterinarians for their observation and identification of clinical signs exhibited ante mortem. Although these animals may be sampled later at other collection sites, the animals are provided post mortem without information as to relevant clinical signs exhibited ante mortem. For these reasons, we believe APHIS needs to

USDA/OIG-A/50601-10-KC Page 27

observe these animals ante mortem when possible to assure the animals from the target population are ultimately sampled and the clinical signs evaluated.

snip...

http://www.usda.gov/oig/webdocs/50601-10-KC.pdf


USDA Testing Protocols and Quality Assurance Procedures

In November 2004, USDA announced that its rapid screening test produced an inconclusive BSE test result. A contract laboratory ran its rapid screening test on a brain sample collected for testing and produced three high positive reactive results. As required, the contract laboratory forwarded the inconclusive sample to APHIS’ National Veterinary Services Laboratories (NVSL) for confirmation. NVSL repeated the rapid screening test, which again produced three high positive reactive results. Following established protocol, NVSL ran its confirmatory test, an immunohistochemistry (IHC) test, which was interpreted as negative for BSE.

Faced with conflicting results between the rapid screening and IHC tests, NVSL scientists recommended additional testing to resolve the discrepancy but APHIS headquarters officials concluded that no further testing was necessary since testing protocols were followed and the confirmatory test was negative. In our discussions with APHIS officials, they justified their decision to not do additional testing because the IHC test is internationally recognized as the "gold standard" of testing. Also, they believed that

USDA/OIG-A/50601-10-KC/ Page iv

conducting additional tests would undermine confidence in USDA’s testing protocols.

OIG obtained evidence that indicated additional testing was prudent. We came to this conclusion because the rapid screening tests produced six high positive reactive results, the IHC tests conflicted, and various standard operating procedures were not followed. Also, our review of the relevant scientific literature, other countries’ protocols, and discussions with experts led us to conclude that additional confirmatory testing should be considered in the event of conflicting test results.

To maintain objectivity and independence, we requested that USDA’s Agricultural Research Service (ARS) perform the Office International des Epizooties (OIE) Scrapie-Associated Fibrils (SAF) immunoblot test. The additional testing produced positive results. To confirm, the Secretary of Agriculture requested that an internationally recognized BSE laboratory in Weybridge, England (Weybridge) perform additional testing. Weybridge conducted various tests, including their own IHC tests and three Western blot tests. The tests confirmed that the cow was infected with BSE. The Secretary immediately directed USDA scientists to work with international experts to develop new protocols that include performing dual confirmatory tests in the event of an inconclusive BSE screening test.

We attribute the failure to identify the BSE positive sample to rigid protocols, as well as the lack of adequate quality assurance controls over its testing program. Details of our concerns are discussed in Findings 3 and 4.

snip...

Section 2. Testing Protocols and Quality Assurance Controls In November 2004, USDA announced that its rapid screening test, Bio-Rad Enzyme Linked Immunosorbent Assay (ELISA), produced an inconclusive BSE test result as part of its enhanced BSE surveillance program. The ELISA rapid screening test performed at a BSE contract laboratory produced three high positive reactive results.40 As required,41 the contract laboratory forwarded the inconclusive sample to the APHIS National Veterinary Services Laboratories (NVSL) for confirmatory testing. NVSL repeated the ELISA testing and again produced three high positive reactive results.42 In accordance with its established protocol, NVSL ran its confirmatory test, an immunohistochemistry (IHC) test, which was interpreted as negative for BSE. In addition, NVSL performed a histological43 examination of the tissue and did not detect lesions44 consistent with BSE. Faced with conflicting results, NVSL scientists recommended additional testing to resolve the discrepancy but APHIS headquarters officials concluded no further testing was necessary because testing protocols were followed. In our discussions with APHIS officials, they justified their decision not to do additional testing because the IHC is internationally recognized as the “gold standard.” Also, they believed that conducting additional tests would undermine confidence in USDA’s established testing protocols. However, OIG obtained evidence that indicated additional testing was prudent to ensure that USDA’s testing protocols were effective in detecting BSE and that confidence in USDA’s testing procedures was maintained. OIG came to this conclusion because the rapid tests produced six high positive reactive results, confirmatory testing conflicted with the rapid test results, and various standard operating procedures were not followed. Also, our review of scientific literature, other country protocols, as well as discussions with internationally recognized experts led us to conclude that confirmatory testing should not be limited when conflicting test results are obtained. To maintain objectivity and independence in our assessment, we requested the USDA Agricultural Research Service (ARS) perform the Office International des Epizooties (OIE) Scrapie-Associated Fibrils (SAF) 40 ELISA test procedures require two additional (duplicate) tests if the initial test is reactive, before final interpretation. If either of the duplicate tests is reactive, the test is deemed inconclusive. 41 Protocol for BSE Contract Laboratories to Receive and Test Bovine Brain Samples and Report Results for BSE Surveillance Standard Operating Procedure (SOP), dated October 26, 2004. 42 The NVSL conducted an ELISA test on the original material tested at the contract laboratory and on two new cuts from the sample tissue. 43 A visual examination of brain tissue by a microscope. 44 A localized pathological change in a bodily organ or tissue.

immunoblot.45 ARS performed the test at the National Animal Disease Center because NVSL did not have the necessary equipment46 (ultracentrifuge) to do the test. APHIS scientists observed and participated, as appropriate, in this effort. The additional tests conducted by ARS produced positive results. To confirm this finding, the Secretary requested the internationally recognized BSE reference laboratory in Weybridge, England, (Weybridge) to perform additional confirmatory testing. Weybridge conducted various tests, including their own IHC methods, as well as three Western blot methods. The tests confirmed that the suspect cow was infected with BSE. Also, Weybridge confirmed this case as an unequivocal positive case of BSE on the basis of IHC. As a result of this finding, the Secretary immediately directed USDA scientists to work with international experts to develop a new protocol that includes performing dual confirmatory tests in the event of another inconclusive BSE screening test. Finding 3 Rigid Protocols Reduced the Likelihood BSE Could be Detected APHIS relied on a single test method, as well as a histological examination of tissue for lesions consistent with BSE, to confirm the presence of BSE even though discrepant test results indicated further testing may be prudent. When IHC test results were interpreted as negative, APHIS concluded the sample tested negative for BSE. Subsequent independent tests initiated by OIG using a different testing method, as well as confirmatory testing by Weybridge, determined that the suspect sample was a positive case of BSE. APHIS Declares BSE Sample Negative Despite Conflicting Results When the tissue sample originally arrived at NVSL in November 2004 from the contract lab, NVSL scientists repeated the ELISA screening test and again produced three high positive reactive results. NVSL scientists cut out two sections of the brain sample for IHC testing. One section was used for an experimental procedure that was not part of the confirmatory testing protocol, and the other cut was for normal IHC testing using scrapie for a positive control.47 According to NVSL scientists, the experimental test results were inconclusive but the IHC test was interpreted as negative. The NVSL scientists were concerned with the inconsistencies and conducted 45 The OIE SAF immunoblot is an internationally recognized confirmatory test, often referred to as a Western blot test. There are different types of Western blots; the OIE SAF immunoblot includes enrichment steps taken with the sample prior to the standard Western blot steps. 46 APHIS has now ordered the necessary equipment for NVSL. USDA/OIG-A/50601-10-KC Page 32

47 A positive control is a sample that is known to contain a given disease or react in the test. The sample then can be used to make sure that the test for that disease works properly. In the case of BSE, tissue infected with either scrapie or BSE can serve as a positive control for an IHC test for BSE since both are different forms of the same disease (transmissible spongiform encephalopathy or TSE).

another IHC test using BSE as a positive control.48 The test result was also interpreted as negative. Also, according to the NVSL scientists, the histological examination of the tissue did not detect lesions consistent with BSE. After the second negative IHC test, NVSL scientists supported doing additional testing. They prepared a plan for additional tests; if those tests had been conducted, BSE may have been detected in the sample. The additional tests recommended by NVSL scientists, but not approved by APHIS Headquarters officials, were the IHC using other antibodies (IHC testing using different antibodies ultimately produced positive results); IHC testing of additional regions of the brain (the cerebellum tested positive); regular and enriched (OIE-like) Western blots (the obex and cerebellum tested positive); and variable rapid tests (the obex and cerebellum tested positive with two different rapid tests). NVSL officials also recommended that the sample be sent to Weybridge for confirmatory testing (to conduct IHC and OIE Western blot tests). In June 2005, Weybridge conducted IHC testing with three different antibodies, including the antibody used in the United States (tested positive), the OIE Western blot (tested positive), a modified commercial kit Western blot (negative) and the NaPTA49 Western blot (tested positive). We obtained information as to the differing protocols used by other countries. We found that while APHIS determined that additional testing was unnecessary after the IHC test, other countries have used multiple tests to confirm positives. In Japan, for example, all reactive screening test samples are examined by both IHC and a Western blot (different from the OIE SAF immunoblot). In the United Kingdom (U.K.), IHC and Western blot (different from the OIE SAF immunoblot) tests are used for all animals that test positive with a screening test. When IHC and the Western blot fail to confirm a positive rapid test, the U.K. resorts to a third test, the OIE SAF immunoblot. With these procedures in place, both Japan and the U.K. have found BSE cases that were rapid test reactive, IHC negative, and finally confirmed positive with a Western blot. Evidence Indicated Additional Testing Would Be Prudent We also spoke with an internationally recognized BSE expert regarding the advisability of limiting confirmatory testing when conflicting results are obtained. This official expressed concern about limiting confirmatory tests to the IHC despite its status as one of the “gold standard” tests. He advised that the IHC is not one test; it is a test method that can vary significantly in sensitivity from laboratory to laboratory. New antibodies can improve or

USDA/OIG-A/50601-10-KC Page 33

48 The NVSL uses scrapie as the positive control as part of its normal IHC testing procedures. Due to the conflicting results between the ELISA and IHC tests, the NVSL conducted another IHC test with BSE as the positive control. Subsequently, the NVSL modified the Confirming Inconclusive Results from BSE Testing Laboratories at the NVSL SOP to show that all IHC tested BSE inconclusive samples from contract laboratories will use BSE as the positive control. 49 Sodium phosphotungstic acid.

USDA/OIG-A/50601-10-KC Page 34

reduce sensitivity, as can variations in many of the reagents50 used. He explained that his laboratory had experienced cases where an initial confirmatory IHC test was challenged by either a more extensive IHC test or “…applying a more sensitive immunoblot.” He emphasized the importance of having additional confirmatory testing to resolve discrepant results since there are many variables, and most of the variability appears to be due to test performance of the laboratory. OIG became concerned that APHIS relied on its confirmatory test methods when rapid screening tests produced high positive reactive results six times.51 Also, we found that APHIS did not pursue and/or investigate why the ELISA produced high reactive positives. An official from the manufacturer of the ELISA test kit told us that they requested, but did not receive, information on the inconclusive reported by USDA in November 2004. These officials requested this information in order to understand the reasons for the discrepant results. The Bio-Rad ELISA rapid screening test is internationally recognized as a highly reliable test and is the rapid screening test used for USDA’s surveillance effort. According to APHIS officials, they felt it would be inappropriate to collaborate on the one sample because Bio-Rad is a USDA-APHIS regulated biologics company and only one of several competing manufacturers. To maintain confidence in USDA’s test protocols, it would have been a prudent course of action for USDA to determine why such significant differing results were obtained. The fact that they did not pursue this matter caused concerns relating to testing quality assurance procedures. In this regard, we found lack of compliance with SOPs relating to laboratory proficiency and quality assurance (see Finding 4), and, in this case, the storage of sampled material and reporting of test results. We found that the NVSL did not prepare a report to document its confirmatory testing of the November 2004 sample. The SOP52 states that the BSE network laboratory initiating the inconclusive will receive a report of the case. NVSL officials could not explain why a final report had not been prepared. We also found that the inconclusive sample was frozen prior to IHC confirmatory testing. APHIS protocols state that samples are not to be frozen prior to laboratory submission. The OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals states that the tissues for histological or IHC examination are not to be frozen as this will provide artefactual53 lesions that may compromise the identification of vacuolation,54 and/or target site location. Although the sample was frozen, APHIS did not conduct a Western 50 A substance used in a chemical reaction to detect, measure, examine, or produce other substances. 51 The six high positive reactive results were from three tests of the submitted sample (multiple runs of the same test). 52 Confirming Inconclusive Results from Bovine Spongiform Encephalopathy Testing Laboratories at the NVSL SOP, dated August 13, 2004. 53 A structure or feature not normally present but visible as a result of an external agent or action, such as one seen in a microscopic specimen after fixation. 54 A small space or cavity in a tissue.

USDA/OIG-A/50601-10-KC Page 35

blot test on the sample. An NVSL official said freezing the sample does not make it unsuitable for IHC. APHIS determined that the sample was suitable for IHC and therefore, in accordance with its SOP, did not conduct a Western blot test. APHIS also handled the December 2003 BSE positive differently than the November 2004 sample. For the December 2003 BSE positive sample, APHIS conducted several confirmatory tests in addition to the IHC testing and histological examination (unlike the November 2004 sample tests, both of these were interpreted as positive). ARS performed two Western blots (Prionics Check Western blot and an ARS developed Western blot). When we questioned why the samples were handled differently, APHIS officials stated that the Western blots were done because the IHC in December 2003 was positive. The additional testing was done to further characterize the case, because it was the first U.S. case; the additional testing was not done to decide whether the case was positive or negative. We discussed our concerns with limiting confirmatory testing, particularly given conflicting results, with the APHIS Administrator and staff in May 2005. He explained that international standards recognized more than one “gold standard” test. In setting up its testing protocols, USDA had chosen one as the confirming test, the IHC test, and stayed with it. APHIS protocols only allow a Western blot in cases where the sample has become unsuitable for IHC tests (e.g., in cases where the brainstem architecture is not evident). International standards, he continued, accept a tissue sample as negative for BSE if its IHC test is negative. Once the test is run in accordance with protocols, additional tests undermine the USDA testing protocol and the surveillance program. He concluded that since APHIS’ protocols accepted the IHC test as confirming the presence or absence of BSE, no further testing was necessary. According to protocol, the tissue sample was determined to have tested negative for BSE. On June 24, 2005, USDA announced that the additional testing by the BSE reference laboratory in England confirmed the presence of BSE in the tissue sample. To obviate the possibility that a future sample would be declared negative and then found positive, the Secretary of Agriculture announced a change to APHIS’ testing protocols that same day. He called for “dual confirmatory tests in the event of another ‘inconclusive’ [reactive] BSE screening test.” He also indicated that he would reinforce proper procedures so that samples will not be frozen, and to spot-check the laboratories to see that they complete reports as required. APHIS issued a SOP on the new confirmatory testing protocols on November 30, 2005.

http://www.usda.gov/oig/webdocs/50601-10-KC.pdf

[Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine
Spongiform Encephalopathy (BSE)

http://www.fsis.usda.gov/OPPDE/Comments/2006-0011/2006-0011-1.pdf




[Docket No. 03-025IFA] FSIS Prohibition of the Use of Specified Risk Materials for Human Food and Requirement for the Disposition of Non-Ambulatory Disabled Cattle

03-025IFA
03-025IFA-2


http://www.fsis.usda.gov/OPPDE/Comments/03-025IFA/03-025IFA-2.pdf


THE SEVEN SCIENTIST REPORT ***


http://www.fda.gov/ohrms/dockets/dockets/02n0273/02n-0273-EC244-Attach-1.pdf

Gerald Wells: Report of the Visit to USA, April-May 1989

snip...

The general opinion of those present was that BSE, as an
overt disease phenomenon, _could exist in the USA, but if it did,
it was very rare. The need for improved and specific surveillance
methods to detect it as recognised...

snip...

It is clear that USDA have little information and _no_ regulatory
responsibility for rendering plants in the US...

snip...

3. Prof. A. Robertson gave a brief account of BSE. The US approach
was to accord it a _very low profile indeed_. Dr. A Thiermann showed
the picture in the ''Independent'' with cattle being incinerated and thought
this was a fanatical incident to be _avoided_ in the US _at all costs_...

snip...

http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

To be published in the Proceedings of the
Fourth International Scientific Congress in
Fur Animal Production. Toronto, Canada,
August 21-28, 1988

Evidence That Transmissible Mink Encephalopathy
Results from Feeding Infected Cattle

R.F. Marsh* and G.R. Hartsough

•Department of Veterinary Science, University of Wisconsin-Madison, Madison,
Wisconsin 53706; and ^Emba/Creat Lakes Ranch Service, Thiensville, Wisconsin 53092

ABSTRACT
Epidemiologic investigation of a new incidence of
transmissible mink encephalopathy (TME) in Stetsonville, Wisconsin
suggests that the disease may have resulted from feeding infected
cattle to mink. This observation is supported by the transmission of
a TME-like disease to experimentally inoculated cattle, and by the
recent report of a new bovine spongiform encephalopathy in
England.

INTRODUCTION

Transmissible mink encephalopathy (TME) was first reported in 1965 by Hartsough
and Burger who demonstrated that the disease was transmissible with a long incubation
period, and that affected mink had a spongiform encephalopathy similar to that found in
scrapie-affecied sheep (Hartsough and Burger, 1965; Burger and Hartsough, 1965).
Because of the similarity between TME and scrapie, and the subsequent finding that the
two transmissible agents were indistinguishable (Marsh and Hanson, 1969), it was
concluded that TME most likely resulted from feeding mink scrapie-infecied sheep.
The experimental transmission of sheep scrapie to mink (Hanson et al., 1971)
confirmed the close association of TME and scrapie, but at the same time provided
evidence that they may be different. Epidemiologic studies on previous incidences of
TME indicated that the incubation periods in field cases were between six months and
one year in length (Harxsough and Burger, 1965). Experimentally, scrapie could not be
transmitted to mink in less than one year.
To investigate the possibility that TME may be caused by a (particular strain of
scrapie which might be highly pathogenic for mink, 21 different strains of the scrapie
agent, including their sheep or goat sources, were inoculated into a total of 61 mink.
Only one mink developed a progressive neurologic disease after an incubation period of
22 mon..s (Marsh and Hanson, 1979). These results indicated that TME was either caused
by a strain of sheep scrapie not yet tested, or was due to exposure to a scrapie-like agent
from an unidentified source.

OBSERVATIONS AND RESULTS

A New Incidence of TME. In April of 1985, a mink rancher in Stetsonville, Wisconsin
reported that many of his mink were "acting funny", and some had died. At this time, we
visited the farm and found that approximately 10% of all adult mink were showing
typical signs of TME: insidious onset characterized by subtle behavioral changes, loss of
normal habits of cleanliness, deposition of droppings throughout the pen rather than in a
single area, hyperexcitability, difficulty in chewing and swallowing, and tails arched over
their _backs like squirrels. These signs were followed by progressive deterioration of
neurologic function beginning with locomoior incoordination, long periods of somnolence
in which the affected mink would stand motionless with its head in the corner of the
cage, complete debilitation, and death. Over the next 8-10 weeks, approximately 40% of
all the adult mink on the farm died from TME.
Since previous incidences of TME were associated with common or shared feeding
practices, we obtained a careful history of feed ingredients used over the past 12-18
months. The rancher was a "dead stock" feeder using mostly (>95%) downer or dead dairy
cattle and a few horses. Sheep had never been fed.

Experimental Transmission. The clinical diagnosis of TME was confirmed by
histopaihologic examination and by experimental transmission to mink after incubation
periods of four months. To investigate the possible involvement of cattle in this disease
cycle, two six-week old castrated Holstein bull calves were inoculated intracerebrally
with a brain suspension from affected mink. Each developed a fatal spongiform
encephalopathy after incubation periods of 18 and 19 months.

DISCUSSION
These findings suggest that TME may result from feeding mink infected cattle and
we have alerted bovine practitioners that there may exist an as yet unrecognized
scrapie-like disease of cattle in the United States (Marsh and Hartsough, 1986). A new
bovine spongiform encephalopathy has recently been reported in England (Wells et al.,
1987), and investigators are presently studying its transmissibility and possible
relationship to scrapie. Because this new bovine disease in England is characterized by
behavioral changes, hyperexcitability, and agressiveness, it is very likely it would be
confused with rabies in the United Stales and not be diagnosed. Presently, brains from
cattle in the United States which are suspected of rabies infection are only tested with
anti-rabies virus antibody and are not examined histopathologically for lesions of
spongiform encephalopathy.
We are presently pursuing additional studies to further examine the possible
involvement of cattle in the epidemiology of TME. One of these is the backpassage of
our experimental bovine encephalopathy to mink. Because (here are as yet no agent-
specific proteins or nucleic acids identified for these transmissible neuropathogens, one
means of distinguishing them is by animal passage and selection of the biotype which
grows best in a particular host. This procedure has been used to separate hamster-
adapted and mink-udapted TME agents (Marsh and Hanson, 1979). The intracerebral
backpassage of the experimental bovine agent resulted in incubations of only four months
indicating no de-adaptation of the Stetsonville agent for mink after bovine passage.
Mink fed infected bovine brain remain normal after six months. It will be essential to
demonstrate oral transmission fiom bovine to mink it this proposed epidemiologic
association is to be confirmed.

ACKNOWLEDGEMENTS
These studies were supported by the College of Agricultural and Life Sciences,
University of Wisconsin-Madison and by a grant (85-CRCR-1-1812) from the United
States Department of Agriculture. The authors also wish to acknowledge the help and
encouragement of Robert Hanson who died during the course of these investigations.

REFERENCES
Burger, D. and Hartsough, G.R. 1965. Encephalopathy of mink. II. Experimental and
natural transmission. J. Infec. Dis. 115:393-399.
Hanson, R.P., Eckroade, R.3., Marsh, R.F., ZuRhein, C.M., Kanitz, C.L. and Gustatson,
D.P. 1971. Susceptibility of mink to sheep scrapie. Science 172:859-861.
Hansough, G.R. and Burger, D. 1965. Encephalopathy of mink. I. Epizoociologic and
clinical observations. 3. Infec. Dis. 115:387-392.
Marsh, R.F. and Hanson, R.P. 1969. Physical and chemical properties of the
transmissible mink encephalopathy agent. 3. ViroL 3:176-180.
Marsh, R.F. and Hanson, R.P. 1979. On the origin of transmissible mink
encephalopathy. In Hadlow, W.J. and Prusiner, S.P. (eds.) Slow transmissible
diseases of the nervous system. Vol. 1, Academic Press, New York, pp 451-460.
Marsh, R.F. and Hartsough, G.R. 1986. Is there a scrapie-like disease in cattle?
Proceedings of the Seventh Annual Western Conference for Food Animal Veterinary
Medicine. University of Arizona, pp 20.
Wells, G.A.H., Scott, A.C., Johnson, C.T., Cunning, R.F., Hancock, R.D., Jeffrey, M.,
Dawson, M. and Bradley, R. 1987. A novel progressive spongiform encephalopathy
in cattle. Vet. Rec. 121:419-420.

MARSH

http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf

In Confidence - Perceptions of unconventional slow virus diseases
of animals in the USA - APRIL-MAY 1989 - G A H Wells

http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

shut up and sing


God loves the Dixie Chicks, and so do we


http://www.dixiechicks.com/


still disgusted in Bacliff, Texas

Terry S. Singeltary Sr.

P.O. Box 42

Bacliff, Texas USA 77518




Follow Ups:



Post a Followup

Name:
E-mail: (optional)
Subject:

Comments:

Optional Link URL:
Link Title:
Optional Image URL: